In mathematics, in the field of functional analysis, a Minkowski functional (after Hermann Minkowski) or gauge function is a function that recovers a notion of distance on a linear space.

If K {\textstyle K} is a subset of a real or complex vector space X , {\textstyle X,} then the Minkowski functional or gauge of K {\textstyle K} is defined to be the function p K : X [ 0 , ] , {\textstyle p_{K}:X\to [0,\infty ],} valued in the extended real numbers, defined by p K ( x ) := inf { r R : r > 0  and  x r K }  for every  x X , {\displaystyle p_{K}(x):=\inf\{r\in \mathbb {R} :r>0{\text{ and }}x\in rK\}\quad {\text{ for every }}x\in X,} where the infimum of the empty set is defined to be positive infinity {\textstyle \,\infty \,} (which is not a real number so that p K ( x ) {\textstyle p_{K}(x)} would then not be real-valued).

The set K {\textstyle K} is often assumed/picked to have properties, such as being an absorbing disk in X {\textstyle X} , that guarantee that p K {\textstyle p_{K}} will be a real-valued seminorm on X . {\textstyle X.} In fact, every seminorm p {\textstyle p} on X {\textstyle X} is equal to the Minkowski functional (that is, p = p K {\textstyle p=p_{K}} ) of any subset K {\textstyle K} of X {\textstyle X} satisfying

{ x X : p ( x ) < 1 } K { x X : p ( x ) 1 } {\displaystyle \{x\in X:p(x)<1\}\subseteq K\subseteq \{x\in X:p(x)\leq 1\}}

(where all three of these sets are necessarily absorbing in X {\textstyle X} and the first and last are also disks).

Thus every seminorm (which is a function defined by purely algebraic properties) can be associated (non-uniquely) with an absorbing disk (which is a set with certain geometric properties) and conversely, every absorbing disk can be associated with its Minkowski functional (which will necessarily be a seminorm). These relationships between seminorms, Minkowski functionals, and absorbing disks is a major reason why Minkowski functionals are studied and used in functional analysis. In particular, through these relationships, Minkowski functionals allow one to "translate" certain geometric properties of a subset of X {\textstyle X} into certain algebraic properties of a function on X . {\textstyle X.}

The Minkowski function is always non-negative (meaning p K 0 {\textstyle p_{K}\geq 0} ). This property of being nonnegative stands in contrast to other classes of functions, such as sublinear functions and real linear functionals, that do allow negative values. However, p K {\textstyle p_{K}} might not be real-valued since for any given x X , {\textstyle x\in X,} the value p K ( x ) {\textstyle p_{K}(x)} is a real number if and only if { r > 0 : x r K } {\textstyle \{r>0:x\in rK\}} is not empty. Consequently, K {\textstyle K} is usually assumed to have properties (such as being absorbing in X , {\textstyle X,} for instance) that will guarantee that p K {\textstyle p_{K}} is real-valued.

Definition

Let K {\textstyle K} be a subset of a real or complex vector space X . {\textstyle X.} Define the gauge of K {\textstyle K} or the Minkowski functional associated with or induced by K {\textstyle K} as being the function p K : X [ 0 , ] , {\textstyle p_{K}:X\to [0,\infty ],} valued in the extended real numbers, defined by

p K ( x ) := inf { r > 0 : x r K } , {\displaystyle p_{K}(x):=\inf\{r>0:x\in rK\},}

(recall that the infimum of the empty set is {\textstyle \,\infty } , that is, inf = {\textstyle \inf \varnothing =\infty } ). Here, { r > 0 : x r K } {\textstyle \{r>0:x\in rK\}} is shorthand for { r R : r > 0  and  x r K } . {\textstyle \{r\in \mathbb {R} :r>0{\text{ and }}x\in rK\}.}

For any x X , {\textstyle x\in X,} p K ( x ) {\textstyle p_{K}(x)\neq \infty } if and only if { r > 0 : x r K } {\textstyle \{r>0:x\in rK\}} is not empty. The arithmetic operations on R {\textstyle \mathbb {R} } can be extended to operate on ± , {\textstyle \pm \infty ,} where r ± := 0 {\textstyle {\frac {r}{\pm \infty }}:=0} for all non-zero real < r < . {\textstyle -\infty The products 0 {\textstyle 0\cdot \infty } and 0 {\textstyle 0\cdot -\infty } remain undefined.

Some conditions making a gauge real-valued

In the field of convex analysis, the map p K {\textstyle p_{K}} taking on the value of {\textstyle \,\infty \,} is not necessarily an issue. However, in functional analysis p K {\textstyle p_{K}} is almost always real-valued (that is, to never take on the value of {\textstyle \,\infty \,} ), which happens if and only if the set { r > 0 : x r K } {\textstyle \{r>0:x\in rK\}} is non-empty for every x X . {\textstyle x\in X.}

In order for p K {\textstyle p_{K}} to be real-valued, it suffices for the origin of X {\textstyle X} to belong to the algebraic interior or core of K {\textstyle K} in X . {\textstyle X.} If K {\textstyle K} is absorbing in X , {\textstyle X,} where recall that this implies that 0 K , {\textstyle 0\in K,} then the origin belongs to the algebraic interior of K {\textstyle K} in X {\textstyle X} and thus p K {\textstyle p_{K}} is real-valued. Characterizations of when p K {\textstyle p_{K}} is real-valued are given below.

Motivating examples

Example 1

Consider a normed vector space ( X , ) , {\textstyle (X,\|\,\cdot \,\|),} with the norm {\textstyle \|\,\cdot \,\|} and let U := { x X : x 1 } {\textstyle U:=\{x\in X:\|x\|\leq 1\}} be the unit ball in X . {\textstyle X.} Then for every x X , {\textstyle x\in X,} x = p U ( x ) . {\textstyle \|x\|=p_{U}(x).} Thus the Minkowski functional p U {\textstyle p_{U}} is just the norm on X . {\textstyle X.}

Example 2

Let X {\textstyle X} be a vector space without topology with underlying scalar field K . {\textstyle \mathbb {K} .} Let f : X K {\textstyle f:X\to \mathbb {K} } be any linear functional on X {\textstyle X} (not necessarily continuous). Fix a > 0. {\textstyle a>0.} Let K {\textstyle K} be the set K := { x X : | f ( x ) | a } {\displaystyle K:=\{x\in X:|f(x)|\leq a\}} and let p K {\textstyle p_{K}} be the Minkowski functional of K . {\textstyle K.} Then p K ( x ) = 1 a | f ( x ) |  for all  x X . {\displaystyle p_{K}(x)={\frac {1}{a}}|f(x)|\quad {\text{ for all }}x\in X.} The function p K {\textstyle p_{K}} has the following properties:

  1. It is subadditive: p K ( x y ) p K ( x ) p K ( y ) . {\textstyle p_{K}(x y)\leq p_{K}(x) p_{K}(y).}
  2. It is absolutely homogeneous: p K ( s x ) = | s | p K ( x ) {\textstyle p_{K}(sx)=|s|p_{K}(x)} for all scalars s . {\textstyle s.}
  3. It is nonnegative: p K 0. {\textstyle p_{K}\geq 0.}

Therefore, p K {\textstyle p_{K}} is a seminorm on X , {\textstyle X,} with an induced topology. This is characteristic of Minkowski functionals defined via "nice" sets. There is a one-to-one correspondence between seminorms and the Minkowski functional given by such sets. What is meant precisely by "nice" is discussed in the section below.

Notice that, in contrast to a stronger requirement for a norm, p K ( x ) = 0 {\textstyle p_{K}(x)=0} need not imply x = 0. {\textstyle x=0.} In the above example, one can take a nonzero x {\textstyle x} from the kernel of f . {\textstyle f.} Consequently, the resulting topology need not be Hausdorff.

Common conditions guaranteeing gauges are seminorms

To guarantee that p K ( 0 ) = 0 , {\textstyle p_{K}(0)=0,} it will henceforth be assumed that 0 K . {\textstyle 0\in K.}

In order for p K {\textstyle p_{K}} to be a seminorm, it suffices for K {\textstyle K} to be a disk (that is, convex and balanced) and absorbing in X , {\textstyle X,} which are the most common assumption placed on K . {\textstyle K.}

More generally, if K {\textstyle K} is convex and the origin belongs to the algebraic interior of K , {\textstyle K,} then p K {\textstyle p_{K}} is a nonnegative sublinear functional on X , {\textstyle X,} which implies in particular that it is subadditive and positive homogeneous. If K {\textstyle K} is absorbing in X {\textstyle X} then p [ 0 , 1 ] K {\textstyle p_{[0,1]K}} is positive homogeneous, meaning that p [ 0 , 1 ] K ( s x ) = s p [ 0 , 1 ] K ( x ) {\textstyle p_{[0,1]K}(sx)=sp_{[0,1]K}(x)} for all real s 0 , {\textstyle s\geq 0,} where [ 0 , 1 ] K = { t k : t [ 0 , 1 ] , k K } . {\textstyle [0,1]K=\{tk:t\in [0,1],k\in K\}.} If q {\textstyle q} is a nonnegative real-valued function on X {\textstyle X} that is positive homogeneous, then the sets U := { x X : q ( x ) < 1 } {\textstyle U:=\{x\in X:q(x)<1\}} and D := { x X : q ( x ) 1 } {\textstyle D:=\{x\in X:q(x)\leq 1\}} satisfy [ 0 , 1 ] U = U {\textstyle [0,1]U=U} and [ 0 , 1 ] D = D ; {\textstyle [0,1]D=D;} if in addition q {\textstyle q} is absolutely homogeneous then both U {\textstyle U} and D {\textstyle D} are balanced.

Gauges of absorbing disks

Arguably the most common requirements placed on a set K {\textstyle K} to guarantee that p K {\textstyle p_{K}} is a seminorm are that K {\textstyle K} be an absorbing disk in X . {\textstyle X.} Due to how common these assumptions are, the properties of a Minkowski functional p K {\textstyle p_{K}} when K {\textstyle K} is an absorbing disk will now be investigated. Since all of the results mentioned above made few (if any) assumptions on K , {\textstyle K,} they can be applied in this special case.

Algebraic properties

Let X {\textstyle X} be a real or complex vector space and let K {\textstyle K} be an absorbing disk in X . {\textstyle X.}

  • p K {\textstyle p_{K}} is a seminorm on X . {\textstyle X.}
  • p K {\textstyle p_{K}} is a norm on X {\textstyle X} if and only if K {\textstyle K} does not contain a non-trivial vector subspace.
  • p s K = 1 | s | p K {\textstyle p_{sK}={\frac {1}{|s|}}p_{K}} for any scalar s 0. {\textstyle s\neq 0.}
  • If J {\textstyle J} is an absorbing disk in X {\textstyle X} and J K {\textstyle J\subseteq K} then p K p J . {\textstyle p_{K}\leq p_{J}.}
  • If K {\textstyle K} is a set satisfying { x X : p ( x ) < 1 } K { x X : p ( x ) 1 } {\textstyle \{x\in X:p(x)<1\}\;\subseteq \;K\;\subseteq \;\{x\in X:p(x)\leq 1\}} then K {\textstyle K} is absorbing in X {\textstyle X} and p = p K , {\textstyle p=p_{K},} where p K {\textstyle p_{K}} is the Minkowski functional associated with K ; {\textstyle K;} that is, it is the gauge of K . {\textstyle K.}
  • In particular, if K {\textstyle K} is as above and q {\textstyle q} is any seminorm on X , {\textstyle X,} then q = p {\textstyle q=p} if and only if { x X : q ( x ) < 1 } K { x X : q ( x ) 1 } . {\textstyle \{x\in X:q(x)<1\}\;\subseteq \;K\;\subseteq \;\{x\in X:q(x)\leq 1\}.}
  • If x X {\textstyle x\in X} satisfies p K ( x ) < 1 {\textstyle p_{K}(x)<1} then x K . {\textstyle x\in K.}

Topological properties

Assume that X {\textstyle X} is a (real or complex) topological vector space (TVS) (not necessarily Hausdorff or locally convex) and let K {\textstyle K} be an absorbing disk in X . {\textstyle X.} Then

Int X K { x X : p K ( x ) < 1 } K { x X : p K ( x ) 1 } Cl X K , {\displaystyle \operatorname {Int} _{X}K\;\subseteq \;\{x\in X:p_{K}(x)<1\}\;\subseteq \;K\;\subseteq \;\{x\in X:p_{K}(x)\leq 1\}\;\subseteq \;\operatorname {Cl} _{X}K,}

where Int X K {\textstyle \operatorname {Int} _{X}K} is the topological interior and Cl X K {\textstyle \operatorname {Cl} _{X}K} is the topological closure of K {\textstyle K} in X . {\textstyle X.} Importantly, it was not assumed that p K {\textstyle p_{K}} was continuous nor was it assumed that K {\textstyle K} had any topological properties.

Moreover, the Minkowski functional p K {\textstyle p_{K}} is continuous if and only if K {\textstyle K} is a neighborhood of the origin in X . {\textstyle X.} If p K {\textstyle p_{K}} is continuous then Int X K = { x X : p K ( x ) < 1 }  and  Cl X K = { x X : p K ( x ) 1 } . {\displaystyle \operatorname {Int} _{X}K=\{x\in X:p_{K}(x)<1\}\quad {\text{ and }}\quad \operatorname {Cl} _{X}K=\{x\in X:p_{K}(x)\leq 1\}.}

Minimal requirements on the set

This section will investigate the most general case of the gauge of any subset K {\textstyle K} of X . {\textstyle X.} The more common special case where K {\textstyle K} is assumed to be an absorbing disk in X {\textstyle X} was discussed above.

Properties

All results in this section may be applied to the case where K {\textstyle K} is an absorbing disk.

Throughout, K {\textstyle K} is any subset of X . {\textstyle X.}

Examples

  1. If L {\textstyle {\mathcal {L}}} is a non-empty collection of subsets of X {\textstyle X} then p L ( x ) = inf { p L ( x ) : L L } {\textstyle p_{\cup {\mathcal {L}}}(x)=\inf \left\{p_{L}(x):L\in {\mathcal {L}}\right\}} for all x X , {\textstyle x\in X,} where L   = def   L L L . {\textstyle \cup {\mathcal {L}}~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~{\textstyle \bigcup \limits _{L\in {\mathcal {L}}}}L.}
    • Thus p K L ( x ) = min { p K ( x ) , p L ( x ) } {\textstyle p_{K\cup L}(x)=\min \left\{p_{K}(x),p_{L}(x)\right\}} for all x X . {\textstyle x\in X.}
  2. If L {\textstyle {\mathcal {L}}} is a non-empty collection of subsets of X {\textstyle X} and I X {\textstyle I\subseteq X} satisfies

{ x X : p L ( x ) < 1  for all  L L } I { x X : p L ( x ) 1  for all  L L } {\displaystyle \left\{x\in X:p_{L}(x)<1{\text{ for all }}L\in {\mathcal {L}}\right\}\quad \subseteq \quad I\quad \subseteq \quad \left\{x\in X:p_{L}(x)\leq 1{\text{ for all }}L\in {\mathcal {L}}\right\}} then p I ( x ) = sup { p L ( x ) : L L } {\textstyle p_{I}(x)=\sup \left\{p_{L}(x):L\in {\mathcal {L}}\right\}} for all x X . {\textstyle x\in X.}

The following examples show that the containment ( 0 , R ] K e > 0 ( 0 , R e ) K {\textstyle (0,R]K\;\subseteq \;{\textstyle \bigcap \limits _{e>0}}(0,R e)K} could be proper.

Example: If R = 0 {\textstyle R=0} and K = X {\textstyle K=X} then ( 0 , R ] K = ( 0 , 0 ] X = X = {\textstyle (0,R]K=(0,0]X=\varnothing X=\varnothing } but e > 0 ( 0 , e ) K = e > 0 X = X , {\textstyle {\textstyle \bigcap \limits _{e>0}}(0,e)K={\textstyle \bigcap \limits _{e>0}}X=X,} which shows that its possible for ( 0 , R ] K {\textstyle (0,R]K} to be a proper subset of e > 0 ( 0 , R e ) K {\textstyle {\textstyle \bigcap \limits _{e>0}}(0,R e)K} when R = 0. {\textstyle R=0.} {\textstyle \blacksquare }

The next example shows that the containment can be proper when R = 1 ; {\textstyle R=1;} the example may be generalized to any real R > 0. {\textstyle R>0.} Assuming that [ 0 , 1 ] K K , {\textstyle [0,1]K\subseteq K,} the following example is representative of how it happens that x X {\textstyle x\in X} satisfies p K ( x ) = 1 {\textstyle p_{K}(x)=1} but x ( 0 , 1 ] K . {\textstyle x\not \in (0,1]K.}

Example: Let x X {\textstyle x\in X} be non-zero and let K = [ 0 , 1 ) x {\textstyle K=[0,1)x} so that [ 0 , 1 ] K = K {\textstyle [0,1]K=K} and x K . {\textstyle x\not \in K.} From x ( 0 , 1 ) K = K {\textstyle x\not \in (0,1)K=K} it follows that p K ( x ) 1. {\textstyle p_{K}(x)\geq 1.} That p K ( x ) 1 {\textstyle p_{K}(x)\leq 1} follows from observing that for every e > 0 , {\textstyle e>0,} ( 0 , 1 e ) K = [ 0 , 1 e ) ( [ 0 , 1 ) x ) = [ 0 , 1 e ) x , {\textstyle (0,1 e)K=[0,1 e)([0,1)x)=[0,1 e)x,} which contains x . {\textstyle x.} Thus p K ( x ) = 1 {\textstyle p_{K}(x)=1} and x e > 0 ( 0 , 1 e ) K . {\textstyle x\in {\textstyle \bigcap \limits _{e>0}}(0,1 e)K.} However, ( 0 , 1 ] K = ( 0 , 1 ] ( [ 0 , 1 ) x ) = [ 0 , 1 ) x = K {\textstyle (0,1]K=(0,1]([0,1)x)=[0,1)x=K} so that x ( 0 , 1 ] K , {\textstyle x\not \in (0,1]K,} as desired. {\textstyle \blacksquare }

Positive homogeneity characterizes Minkowski functionals

The next theorem shows that Minkowski functionals are exactly those functions f : X [ 0 , ] {\textstyle f:X\to [0,\infty ]} that have a certain purely algebraic property that is commonly encountered.

This theorem can be extended to characterize certain classes of [ , ] {\textstyle [-\infty ,\infty ]} -valued maps (for example, real-valued sublinear functions) in terms of Minkowski functionals. For instance, it can be used to describe how every real homogeneous function f : X R {\textstyle f:X\to \mathbb {R} } (such as linear functionals) can be written in terms of a unique Minkowski functional having a certain property.

Characterizing Minkowski functionals on star sets

Characterizing Minkowski functionals that are seminorms

In this next theorem, which follows immediately from the statements above, K {\textstyle K} is not assumed to be absorbing in X {\textstyle X} and instead, it is deduced that ( 0 , 1 ) K {\textstyle (0,1)K} is absorbing when p K {\textstyle p_{K}} is a seminorm. It is also not assumed that K {\textstyle K} is balanced (which is a property that K {\textstyle K} is often required to have); in its place is the weaker condition that ( 0 , 1 ) s K ( 0 , 1 ) K {\textstyle (0,1)sK\subseteq (0,1)K} for all scalars s {\textstyle s} satisfying | s | = 1. {\textstyle |s|=1.} The common requirement that K {\textstyle K} be convex is also weakened to only requiring that ( 0 , 1 ) K {\textstyle (0,1)K} be convex.

Positive sublinear functions and Minkowski functionals

It may be shown that a real-valued subadditive function f : X R {\textstyle f:X\to \mathbb {R} } on an arbitrary topological vector space X {\textstyle X} is continuous at the origin if and only if it is uniformly continuous, where if in addition f {\textstyle f} is nonnegative, then f {\textstyle f} is continuous if and only if V := { x X : f ( x ) < 1 } {\textstyle V:=\{x\in X:f(x)<1\}} is an open neighborhood in X . {\textstyle X.} If f : X R {\textstyle f:X\to \mathbb {R} } is subadditive and satisfies f ( 0 ) = 0 , {\textstyle f(0)=0,} then f {\textstyle f} is continuous if and only if its absolute value | f | : X [ 0 , ) {\textstyle |f|:X\to [0,\infty )} is continuous.

A nonnegative sublinear function is a nonnegative homogeneous function f : X [ 0 , ) {\textstyle f:X\to [0,\infty )} that satisfies the triangle inequality. It follows immediately from the results below that for such a function f , {\textstyle f,} if V := { x X : f ( x ) < 1 } {\textstyle V:=\{x\in X:f(x)<1\}} then f = p V . {\textstyle f=p_{V}.} Given K X , {\textstyle K\subseteq X,} the Minkowski functional p K {\textstyle p_{K}} is a sublinear function if and only if it is real-valued and subadditive, which is happens if and only if ( 0 , ) K = X {\textstyle (0,\infty )K=X} and ( 0 , 1 ) K {\textstyle (0,1)K} is convex.

Correspondence between open convex sets and positive continuous sublinear functions

See also

  • Asymmetric norm – Generalization of the concept of a norm
  • Auxiliary normed space
  • Cauchy's functional equation – Functional equation
  • Finest locally convex topology – Vector space with a topology defined by convex open setsPages displaying short descriptions of redirect targets
  • Finsler manifold – Generalization of Riemannian manifolds
  • Hadwiger's theorem – Theorem in integral geometry
  • Hugo Hadwiger – Swiss mathematician (1908–1981)
  • Locally convex topological vector space – Vector space with a topology defined by convex open sets
  • Morphological image processing – Theory and technique for handling geometrical structuresPages displaying short descriptions of redirect targets
  • Norm (mathematics) – Length in a vector space
  • Seminorm – Mathematical function
  • Topological vector space – Vector space with a notion of nearness

Notes

References

  • Berberian, Sterling K. (1974). Lectures in Functional Analysis and Operator Theory. Graduate Texts in Mathematics. Vol. 15. New York: Springer. ISBN 978-0-387-90081-0. OCLC 878109401.
  • Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN 3-540-13627-4. OCLC 17499190.
  • Conway, John (1990). A course in functional analysis. Graduate Texts in Mathematics. Vol. 96 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.
  • Diestel, Joe (2008). The Metric Theory of Tensor Products: Grothendieck's Résumé Revisited. Vol. 16. Providence, R.I.: American Mathematical Society. ISBN 9781470424831. OCLC 185095773.
  • Dineen, Seán (1981). Complex Analysis in Locally Convex Spaces. North-Holland Mathematics Studies. Vol. 57. Amsterdam New York New York: North-Holland Pub. Co., Elsevier Science Pub. Co. ISBN 978-0-08-087168-4. OCLC 16549589.
  • Dunford, Nelson; Schwartz, Jacob T. (1988). Linear Operators. Pure and applied mathematics. Vol. 1. New York: Wiley-Interscience. ISBN 978-0-471-60848-6. OCLC 18412261.
  • Edwards, Robert E. (1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN 978-0-486-68143-6. OCLC 30593138.
  • Grothendieck, Alexander (1973). Topological Vector Spaces. Translated by Chaljub, Orlando. New York: Gordon and Breach Science Publishers. ISBN 978-0-677-30020-7. OCLC 886098.
  • Hogbe-Nlend, Henri (1977). Bornologies and Functional Analysis: Introductory Course on the Theory of Duality Topology-Bornology and its use in Functional Analysis. North-Holland Mathematics Studies. Vol. 26. Amsterdam New York New York: North Holland. ISBN 978-0-08-087137-0. MR 0500064. OCLC 316549583.
  • Hogbe-Nlend, Henri; Moscatelli, V. B. (1981). Nuclear and Conuclear Spaces: Introductory Course on Nuclear and Conuclear Spaces in the Light of the Duality "topology-bornology". North-Holland Mathematics Studies. Vol. 52. Amsterdam New York New York: North Holland. ISBN 978-0-08-087163-9. OCLC 316564345.
  • Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665.
  • Keller, Hans (1974). Differential Calculus in Locally Convex Spaces. Lecture Notes in Mathematics. Vol. 417. Berlin New York: Springer-Verlag. ISBN 978-3-540-06962-1. OCLC 1103033.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Kubrusly, Carlos S. (2011). The Elements of Operator Theory (Second ed.). Boston: Birkhäuser. ISBN 978-0-8176-4998-2. OCLC 710154895.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
  • Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.
  • Köthe, Gottfried (1979). Topological Vector Spaces II. Grundlehren der mathematischen Wissenschaften. Vol. 237. New York: Springer Science & Business Media. ISBN 978-0-387-90400-9. OCLC 180577972.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Pietsch, Albrecht (1979). Nuclear Locally Convex Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 66 (Second ed.). Berlin, New York: Springer-Verlag. ISBN 978-0-387-05644-9. OCLC 539541.
  • Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge England: Cambridge University Press. ISBN 978-0-521-29882-7. OCLC 589250.
  • Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277.
  • Thompson, Anthony C. (1996). Minkowski Geometry. Encyclopedia of Mathematics and Its Applications. Cambridge University Press. ISBN 0-521-40472-X.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Schechter, Eric (1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365.
  • Schaefer, H. H. (1999). Topological Vector Spaces. New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Swartz, Charles (1992). An introduction to Functional Analysis. New York: M. Dekker. ISBN 978-0-8247-8643-4. OCLC 24909067.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
  • Wong, Yau-Chuen (1979). Schwartz Spaces, Nuclear Spaces, and Tensor Products. Lecture Notes in Mathematics. Vol. 726. Berlin New York: Springer-Verlag. ISBN 978-3-540-09513-2. OCLC 5126158.

Further reading

  • F. Simeski, A. M. P. Boelens, and M. Ihme. "Modeling Adsorption in Silica Pores via Minkowski Functionals and Molecular Electrostatic Moments". Energies 13 (22) 5976 (2020). doi:10.3390/en13225976.

Figure A.7 Maximum value of Minkowski Functional V 1 over a range of

The Minkowski functionals computed along the directions X and Y on each

Minkowski Functionals (solid curves and left axis) and Pearson's

The requirements defining the Minkowski functionals Download

Reduced numerical Minkowski Functional ̈ 1⁄2 (top), ̈ 3⁄4 and ̈